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PURPOSE 

The purpose of this paper is to discuss an 
investigation of the missing data problem in a 
list frame survey which has a simple stratified 
design. A description of the missing data proce- 
dures is given, and a general theoretical com- 

parison is made among them. The main thrust of 
this report is a simulation experiment with these 
missing data procedures. All of the examples and 
data are from agricultural surveys by the Statis- 
tical Reporting Service (SRS) of the United 
States Department of Agriculture (USDA). 

INTRODUCTION 

In the area of survey design, the missing 
data problem is one of increasing concern. Non - 

response rates of 10% are not unusual for SRS 
surveys, and there is a fear that these rates may 

increase. 
Why worry about missing data? If there is 

little difference between the missing data and 

the reported data in a simple stratified design, 
the only consequence of missing data is the re- 

duction in sample size. This reduction can 
easily be offset by increasing the initial sample 

size. However, in many cases it is probable that 

the missing data and the reported data re not 
alike. 

A difference between missing and reported 
data leads to biases in the survey estimates. 
The size of these biases depends on: 1. the 

magnitude of the difference between the missing 
and reported data. 2. the percentage of non- 
response. 
Let: p = the percentage of the population which 

would respond 
q the percentage of the population which 

would not respond 
p = the population mean 

the mean of the part of the population 
which would respond 
the mean of the part of the population 
which would not respond 

Of course, p 
pu1 

+ qp2. Also, let 

D= 
Then, the relative difference between the data 

which would be reported and the data which would 

not be reported is: 

-u2. 

The bias in only using the reported data to es- 

timate p is: 

u1 =q (u1 -u2) = qD. 

Thus, the relationship between 3, q and D is 
linear. Undoubtedly, these potential biases 
are the real cause of concern about missing data 

Similarly, the relationship between B' (the 

relative bias), q and D' is also linear: 

B' = - u2 - q 
(41 

- u2) 

q D . 
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The causes of missing data are complex and 
varied, but the emphasis in any survey should be 
on eliminating or minimizing the likelihood of 
missing data before the survey starts. Proce- 
dures to estimate for missing data are a stopgap 
measure -- they are techniques to use after the 
survey is over when no other alternative is pos- 
sible. Obviously, no procedure can be as good 
as not having any missing data. Furthermore, 
when the percentage of missing data is extremely 
high, there is probably no procedure that can 
estimate the missing data efficiently enough to 
make the survey worthwhile. With moderate and 
low missing data rates, perhaps some missing 
data procedures can minimize the bias to a tol- 

erable level. 

The six missing data procedures discussed 
in this investigation are the double sampling 
ratio procedure, the double sampling regression 
procedure, and four variations of the hot deck 
procedure. Some general advantages and disad- 

vantages of each one are outlined. 

The Double Sampling Ratio Procedure 
Often there is an auxiliary variable asso- 

ciated with each sampling unit. This auxiliary 

variable may be a variable that is used to 
stratify the population, an observed variable, 
or any other additional variable that can be 
obtained for the whole sample. There should 
also be a reasonable correlation between the 
primary variable and the auxiliary variable. 

The double sampling ratio design is well - 
known. In this experiment the first sample is 

the selected sample, including missing and re- 

ported data. Then the second sample is only 
the reported data. The ratio estimator and its 

approximate variance for a simple random sample 
(1, pg. 340) are: 

(I) Ratio = 

(II) VAR(yRatio) 
= 

) (2R Sx - R Sx) 

where: 

x' = average of the auxiliary variable over 

the whole sample 
x = average of the auxiliary variable over 

the part of the sample that reported data 

y = average of the primary variable over the 
part of the sample that reported data 

X = the average of the auxiliary variable 
over the whole population 

Y = the average of the primary variable over 
the whole population 

= the variance of the auxiliary variable 

Sy = the variance of the primary variable 



p = the correlation between x and y 
n'= size of the entire sample 
n = size of the sample that reported data 
N = size of the population 

(Note that the variance was multiplied by the 
finite population correction factor.) 

Although the double sampling ratio estimator 
is almost always a biased estimator, it is easy 
to compute even for complex samples. In this 
report the design is a simple stratified sample 
so the above formulas are applied in each stra- 

tum. Usually S2, S2, p, and R are unknown, but 

their corresponding sample estimates can be sub- 
stituted into the previous two equations (I and 
II). As Cochran points out (1, pg. 341), the 
resulting estimate of variance is not unbiased 
but appears to be a good approximation. 

This ratio estimator makes two assumptions: 
1. the initial sample is a random sample 2. the 
missing data comprise a random subsample of the 
initial sample. This second assumption is prob- 
ably violated in most surveys; to what degree it 
is violated depends of course, on the particular 
situation. One hopes that the ratio estimate 
and its variance are fairly insensitive to a 
violation of the second assumption. 

In essence the ratio estimator is a linear 
regression estimator with the intercept assumed 
to be zero. If the population does not follow 
the assumption of a linear model, then the ratio 
estimator (or any regression estimator) becomes 
a biased estimator. Researchers rarely accept 
the linear population model as completely real- 
istic, but approximate analytical results and 
empirical studies show the bias is usually small 
(3, pg. 23 -25; 7, pg. 208 -209; 9). 

One should remember that in a stratified 

design there also exists a combined ratio esti- 
mator. This estimator is used when the ratio 

R = is equal in all strata. For the data in 
X 

this study the idea that the ratios in all 
strata are equal is believed to be false. Thus, 

a separate ratio estimator is used in each stra- 
tum. However, the separate ratio estimator has 
an inherent danger of accumulating a serious 
bias across all strata. This accumulation is 

more likely to be serious when the stratum 
biases are in the same direction (1, pg. 168- 

173). 

The Double Sampling Regression Procedure 
The double sampling regression procedure 

is also quite common. Like the ratio procedure 
one has an auxiliary variable in addition to 
the primary variable. The formulas are (1, pg. 

336 -3392: 
(III) YReg = + b (x' - 

s2 (l-p2) 
(IV) VAR (YReg) 

= n 
We will estimate AR (yReg)swith: 

+ y - y.x 
var (YReg) = 

n n' 

Adjusting var by a finite population 

correction factor of 1 Ñ, one obtains: 
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s2 s2 s2 

(V) var' 
Reg 

) = (1 - 
y 

n' 

y.x 

as an estimate of the variance of in a 

finite population where: 

p2, n', n, N are the same as for 

the ratio estimator 
n 

E 
1 

x- = 

- 
n 

(y1 - (xi - 

b - 
n 

(xi - x)2 

n 

2 (Yi - Y)2 
s 
Y n-1 

= Y)2 - (xi - 

As noted for the ratio estimator, the 
assumption of a linear population model is 
ignored. The estimators may then be biased, but 
one empirical study (3, pg. 22 -25) lends support 
to the conjecture that these biases are small. 
Also, in the stratified data of this study a 
separate regression estimator is used as opposed 
to a combined regression estimator. Therefore, 
one again has the danger of accumulating a 

large bias across all strata, especially when 

each stratum bias is in the same direction (1, 

pg. 200 -202). 

Hot Deck Procedure 

The hot deck is probably the most common 
missing data procedure in use at the present time, 
especially in complex surveys. The Bureau of the 

Census, the Statistical Reporting Service, Sta- 
tistics Canada, and many otherscurrently employ 
this missing data procedure. In spite of this 
wide use little testing or theoretical analysis 
on the impact of the hot deck procedure has ever 
been published (8). This situation is really 
not too surprising because, although the hot 
deck procedure is intuitively satisfying.and ex- 
tremely flexible; its flexibility and lack of a 
strong theoretical development deter anything 
but broad generalizations of its effects. 

A basic outline of the hot deck procedure 
is: 

1: Separate the sample into I classes based 

on k variables. 
2: If an item is missing in a certain class, 

then randomly select a reported item 

from the same class. 
3: Substitute the selected item for the 

missing item. 
4: Compute sample estimates as if there are 

no missing values. 
The most obvious consequence of this pro- 

cedure one would challenge is the fact that the 

estimated variances of the sample mean are almost 

certainly biased below their actual values. Step 



4 above allows one to use a sample size that in- 

cludes the number of missing values. Thus, the 
loss of information due to missing data is not 
reflected in the sampling errors. For example, 
suppose two surveys cover the same population 
and have the same sample size. Furthermore, one 
survey has 30% missing data, and the other survey 
has no missing data. After applying the hot 
deck procedure, the errors of the estimates of 
these two surveys would probably be about equal. 
Obviously, the standard errors from the survey 
that used the hot deck procedure should reflect 
the fact that 30% of the information is missing. 

One should also note that the sample ele- 
ments are no longer independent. The hot deck 
procedure is essentially a duplicating process 
with reported values substituting for missing 
values. The covariance that results from this 
duplication is ignored in the hot deck procedure. 
Ignoring this covariance can be a serious error. 

Probably the greatest attraction of the hot 
deck procedure is its operational simplicity. 
The classification of the data items into I 

classes is an extremely adaptable method. The 
classification variables may be cardinal, ordi- 
nal, categorical, etc. In fact, the whole 

classification method may vary from the subjec- 
tive to the mathematically rigorous. In addi- 

tion, many complex surveys will use the hot deck 
procedure because of the pressure to retain the 
planned sample design (eg. self -weighing designs, 
survey designs using balanced repeated replica- 
tions, etc.). However, the looseness of the 
classification method has tended also to ob- 
struct theoreticalevaluations of the hot deck 
procedure and thus to impede any theoretical 
comparisons between it and other missing data 
procedures. 

The hot deck does have some simple quali- 
ties to recommend it. For example, let E(x -u) 
= B be the bias associated with nonresponse 
when estimating the population mean, u, with 
the mean of a simple random sample. To esti- 

mate u using the hot deck procedure one divides 
the sample into I classes. Let E(xi - ui) be 

the bias in class i, i = 1, 2, I. If pi 

is the proportion of the population in class i, 

then the bias, BHD, associated with the esti- 

mated mean, of the sample data after 

applying the hot deck procedure is simply: 

I 

BHD E (XHD u) = pi B. 

To prove this equation one notes: 

E[xHD] E 
Pi = E{ 

Pi n 

where n. is the number of sample units that 

fell in class i, n is the total sample size, 
n. 

n ' and is the sample average for 

class i. The expected value inside the braces 
is over fixed ni, and the expected value out- 

side the braces is then over all possible 
values of n.. Obviously, 
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pi 
i 

E 
[1=1 pi 

I 

pi ui 
In spite of the fact that and ni are not in- 

dependent, they are uncorrelated. Now, if 

< jBj, for each i then: 
I I 

(I) 
1BHDj E p. < E pi 

i =1 =1 

I 

< Pi ÍBÌ = 

Thus, one can see that the bias using the hot 
deck procedure is less than the bias caused by 
omission data on the condition that < IB¡ 

for each i. This condition should hold in most 

cases, but there is no guarantee because it is a 

function of the quality of the classification 
method. A good classification method should de- 

crease the absolute value of the bias below jBj 

in each of the I classes. However, the hot deck 

allows any classification. The goodness of the 

classification process is left to the integrity 
of the statistician. 

The "Closest" Procedure 

One possible alternative to the random 
substitution of the hot deck procedure is to 

substitute the "closest" reported item for each - 

of the missing items. With one auxiliary vari- 
able, the "closest" value to a missing item is 
simply the value for which the absolute differ- 
ence between the auxiliary variable of the miss- 
ing item and the auxiliary variable of the 
reported item is minimized. In the case of 

ties for the "closest" auxiliary value a random 
selection of one of the tied values is made. 

This procedure should have the same effect 

as assigning the population to many strata and, 

selecting a few units from each stratum -(since 

the stratification is based on the auxiliary 
variable). Thus, suppositions that the hot deck 

method improves with more narrowly defined 
strata can be examined with the results of the 

"closest" procedure. 
Given a good range coverage, this proce- 

dure is fairly robust to very curved relation- 

ships between the auxiliary and primary variables. 
The data in this investigation is not curved 

enough to reveal this robust property of the 

"closest" procedure. - 

The "Two Closest" Procedure 
This procedure is another variation of the 

hot deck procedure. Instead of substituting the 

"closest" reported item for each missing item, 

one substitutes the average of the "closest" 

value whose auxiliary value is smaller than the 

reported item and the "closest" value whose 

value is larger than the reported item. 

The "Class" Mean Procedure 
This last variation of the hot deck pro- 

cedure substitutes the average of the reported 
units in a class for each missing unit in that 

class. It is the simplest and probably the 



cheapest of the procedures presented in this 
paper 

THE SIMULATION EXPERIMENT 

Why Use Simulation? 
The need for simulation in this investiga- 

tion is to compare the estimated variance of the 
estimated means. Possibly one might be able to 
compare how differences in the missing and re- 
ported data theoretically affect the estimated 
means using these six missing data procedures. 
However, the problem of analytically comparing 
the estimated variances of the estimated means 
is unreasonable. The fact that some assumptions 
fail in each procedure ties a knot in the analyt- 
ical work. 

For example, one should recall the esti- 
mated mean of the hot deck procedure, 

xHD. 
Assuming there are differences in the missing and 
reported data, one can not explicitly write the 
expected value of the estimated variance of 

xHD, 
E[Var (xHD)]. In fact, it is not known if 

E[Var = Var and the author strongly 

doubts that it does. However, this paper will 
provide no evidence to support that supposition 
because the structure of the simulation of this 
experiment does not allow an estimate of Var 

But does allow estimate of E[Var If 

E[Var (xHD)] Var (xHD), then there is quite a 

weakness in the hot deck procedure. The costs 
of a simulation experiment providing this type 
of evidence would be much greater than the simu- 
lation actually used. This investigation con- 
tents itself with comparing the estimated 
variance of the estimated mean for each procedure 
with the estimated variance if the sample had no 
missing data. These comparisons will serve the 
purpose of revealing certain key qualities of 
each procedure. 

One should note that the double sampling 
ratio and regression procedures also have vari- 
ance estimates that involve assumptions and 

approximations that may be tenuous. For example, 

the assumption of a linear model is usually in- 
valid in the regression and ratio procedures, 
and the ratio procedure simply uses substitution 
as an approximation to variance estimation. On 
the basis of two important studies (3;9) and 
practical experience one does not expect these 
biases in the variance estimates to be substan- 
tial for large samples. However, the compari- 
sons among the procedures may be sensitive enough 
that these biases would be large enough to affect 
the, comparisons. 

Analysis 
The primary point in the comparison of 

these procedures will be the minimization of the 
biases caused by missing data in the estimated 
means. Secondary importance is given to the 
comparisons of the estimated variances of the 
estimated means. 

An important aspect of this study is the 

fact that the comparisons are based on an exper- 
imental design where each observation is a 
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result of a simulation of a procedure. This 
situation is quite different from a simulation 
study where there may be a thousand or more 
simulations in order to narrow the confidence 
interval of an estimate almost to a point. Re- 
quests should be sent to the author for full 
details of the experimental design and details 
of the data used. 

The correlations of the auxiliary variable 
and primary variable in the data range from 0.0 
to 0.43. One may think that with larger corre- 
lations between the primary and auxiliary vari- 
able the estimates from the regression procedure 
would improve dramatically compared to the other 
procedures. However, the data in this study 
prevent evidence for or against this hypothesis. 
Surely, larger correlations would improve esti- 
mates resulting from all the procedures. Wheth- 
er this improvement is equal for all the proce- 
dures is the question which can not be answered 
in this report. 

Results 
From the analysis of variance the six miss- 

ing data procedures do not yield significantly 
different estimates of the mean. The average 
improvement in the estimated mean using the six 
missing data procedures is shown in Table 1. 

The relative bias reduction ranges from 8% to 
26 0. 

Table 1: Average improvement in the estimated 
mean from the simulation of six miss- 
ing data procedures. 

A= Average estimate of mean B -A 
=Bias Minus the true sample mean B 100% 

-1.9 -1.40 26% 

-2.9 -2.66 8% 

-4.0 -3.63 9% 

-6.2 -5.51 11% 

-9.0 -7.65 15% 

-14.0 -11.27 20% 

Since there is no significant difference in 

the estimated means among the six procedures, 
the focus of interest becomes the estimated var- 
iances of the estimated means. The analysis of 
variance for the six missing data procedures 
with the estimated variance as the dependent 
variable was performed. Obviously, there is a 
significant difference among the estimated var- 
iances because the test statistic is so large: 

MST 
162.245 

414.95 . 

MSTxPlots[Within AxB] 
0.391 

Performing Duncan's multiple comparison 
test at a 95% significance level separates the 
procedures into the following groups: 

tl: double sampling ratio procedure 

t2: double sampling regression procedure 

t3: hot deck procedure with random substitu- 
tion 

t4: "closest" procedure 

t "two closest" procedure 5 



"class" mean procedure. 

Perhaps it is more revealing to examine 
the estimated variances within each A x B cell, 
i.e. at different levels of bias. Table 2 shows 
the estimated variance using each procedure 
minus 9.685, the estimated variance if the sample 
has no missing data. Table 2 is on the next page. 

The usual criterion for judging the vari- 
ances of the estimated means resulting from the 
missing data procedures is that the smallest 
variance is the best. However, a procedure may 
result in a small estimated variance simply be- 
cause of a large negative bias. By comparing 
the estimated variances resulting from the proce- 
dures with 9.685, the estimated variance if the 
sample has no missing data; one can judge if 
there are any large negative biases in the esti- 

mated variances. For example, if the estimated 

variance resulting from a missing data procedure 
is 7.20; then obviously, there is a large nega- 
tive bias in estimating the variance. 

One first notices that in Table 2, as in 

all the results, there is little difference be- 

tween the regression and ratio estimates (proce- 

dures 1 and 2). One then notes that in the 
first three cases there is zero bias, and the hot 
deck estimator with random substitution (proce- 

dure 3) yields variances close to 9.685. The 

ratio and regression procedures have larger dif- 
ferences because they depend on the weak corre- 
lations of the primary and auxiliary variable. 
The "closest" procedure, the "two closest" pro- 
cedure, and the "class" mean procedure (4, 5 and 
6) have negative values. The negative values in- 

dicate that their estimated variances are ever 
less than the estimated variance if the sample 
has no missing data. 

CONCLUSIONS 

The most important aspect in comparing 
these missing data procedures is to protect 

against biases in the estimated means (or totals). 

A split plot analysis of variance shows no sig- 
nificant differences among the estimated means 
which result in using these procedures. All the 

procedures reduce the relative bias that results 

from accepting the mean of the reported data as 
an estimate of the population mean. This reduc- 

tion in relative bias is studied considering 

various non -response rates and considering var- 

ious differences in the respondents and non - 
respondents. Varying from 8% to 26 %, the 

reduction in relative bias averaged 15 %. Con- 

sidering the low correlations between the aux- 
iliary and primary variables, this reduction is 

reasonable. 
An important, though secondary, importance 

is attached to the estimated variances of the 
estimated means. All of these estimated vari- 
ances except those from the ratio and regression 
procedures are generally less than the estimated 
variance that result with no missing data in the 
sample. Furthermore, this discrepancy increases 

as the relative bias increases. This part of 
the investigation clearly reveals why the hot 
deck, the "closest ", the "two closest ", and the 

"class" mean procedures may be undesirable. 
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One is in the peculiar circumstance that, al- 
though all the procedures perform equally in re- 
ducing the bias of the mean, one can not choose 
a procedure on the basis of the smallest vari- 
ance. The variances are deceiving. For example, 
using the hot deck procedure with the "class" 
mean substitution yields the smallest estimated 
variance, but this procedure is probably the 
worst. The results of this report indicate a 

large negative bias in the estimated variance 
resulting from the hot deck procedure because 
this estimated variance is much less than the 
sample variance when there is no missing data. 

One should remember, however, that in many 
cases the only additional information on missing 
data is of a non -numerical nature. For example, 

data may be missing for a certain firm, but the 

only additional information is that it is a small 

insurance firm in Richmond, Virginia. In these 

cases, the hot deck procedure represents the only 

missing data procedure available. In the agri- 

cultural data of this investigation the addition- 
al information is numerical with the result that 
the ratio or regression procedure can be used and 

is better than the other procedures. 
The final result of this investigation is a 

recommendation of the ratio or regression proce- 
dures (the effects of these two procedures being 
indistinguishable). These two procedures have 
been more theoretically explored than the other 
procedures. This estimated variances of the 
estimated means from the ratio or regression 
procedure reflect better than the other proce- 
dures the true quality of the data. The costs 

involved with the ratio regression computer pro- 
gram averaged about $5.00 simulation while the 

program for the other procedures averaged about 
$30.00 per simulation. Thus. the computer costs 
of implementing the ratio or regression proce- 

dure are probably much lower. 
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Table 2 The difference between the estimated variance of the estimated mean resulting from a 
simulation of the missing data and 9.685, the estimated variance of the estimated mean if the 
sample has no missing data. 

B=Bias 

Estimated Variance of the Estimated Mean Minus 9.685 

Double Sampling 
Ratio Procedure 

Double Sampling 
Regression Procedure 

Hot Deck Procedures 

Random 
Substitution 

"Closest" "Two Closest" "Class" 
Mean 

0.0 0.556 0.556 0.126 -0.024 -0.045 -0.528 

0.0 0.885 0.883 0.055 -0.701 -0.295 -1.238 

0.0 2.478 2.478 0.580 -0.785 -0.415 -1.971 

-1.9 0.263 0.263 -0.095 -0.416 -0.454 -0.781 

-2.9 -0.223 -0.224 -0.654 -0.970 -0.906 -1.204 

-4.0 0.355 0.353 -0.884 -0.973 -1.094 -1.685 

-6.2 0.096 0.094 -0.950 -1.277 -1.385 -1.872 

-9.0 1.087 1.084 -1.205 -1.434 -1.700 -2.928 

-14.0 -0.086 -0.090 -1.928 -2.579 -2.750 -3.571 

Average 
Over All 
Levels 

of Bias 

0.601 0.600 -0.551 -1.018 -1.005 -1.753 
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